# **Device Design and Efficiency Subteam Report**

### **Team Members**

Scott Jones Energy Conversion Devices, Inc.

Robert Collins Penn State University

Chris Wronski Penn State University

Eric Schiff Syracuse University

Xunming Deng University of Toledo

Jeff Yang/Baojie Yan United Solar Systems Corp.

Presented at the 17th a-Si National R&D Team Meeting

August 8 & 9, 2003

Vail Marriott Mountain Resort, Vail, Colorado

### Device Design and Efficiency subteam

### Team priorities

### **Urgent Issues with highest priority**

- Fabricate and improve a-Si/a-SiGe/μc-Si triple cell
- Establish device physics related to μc-Si and thin film Si
- Study the dependence of µc-Si formation on different substrates
- Evaluate and improve the doped layer in multiple junction structure for µc-Si bottom cell i-layer
- Study and control the p-i and n-i interface layers for narrow bandgap cells
- Deposition of a-SiGe and μc-Si material at high deposition rate
- Optical designs for light enhancement
- Identify and develop consensus on approaches that have the highest possibility to lead to 15% stable solar cells.

#### **Important Issues:**

- Characterization techniques for μc-Si and correlation of these measurements with device performance
- Post-deposition treatment for µc-Si solar cells
- Understanding and improving Voc
- Deposition of μc-Si in large area.

### UNITED SOLAR SYSTEMS CORP.



# Large-area deposition using the 30 MW/year production constrains

- 1. Modified the large-area deposition machine with new cathode design to simulate 30 MW/year production machine
- 2. Improved the uniformity over a larger area deposition (see the table below)
- 3. Started optimization of component and triple-junction cells using SiH<sub>4</sub> instead of Si<sub>2</sub>H<sub>6</sub>
- 4. Achieved an initial total-area efficiency of 10% with a-Si:H/a-SiGe:H/a-SiGe:H triple-junction structure

### UNITED SOLAR SYSTEMS CORP.



Average thickness uniformity data of individual layers for old and new cathodes, where Hi-Lo (%) = (maximum thickness – minimum thickness) / maximum thickness and CV (%) = standard deviation/average.

| Layer | Cathode | Hi - Lo (11 x 11") | CV (11 x 11") |
|-------|---------|--------------------|---------------|
| I1    | Old     | 54%                | 22.5%         |
|       | New     | 24%                | 10%           |
| I2    | Old     | 46%                | 17.9%         |
|       | New     | 23%                | 8%            |
| I3    | Old     | 55%                | 21.3%         |
|       | New     | 23%                | 8.5%          |

### UNITED SOLAR SYSTEMS CORP.



Initial total-area (0.268 cm $^2$ ) performance of component and triple-junction cells made using large-area machine after installation of new cathode. The cells were deposited with SiH $_4$  over 11"  $\times$  11" deposition area.

| Sample | Structure | Substrate | Light   | P <sub>max</sub><br>(mW/cm <sup>2</sup> ) | $J_{\rm sc}$ (mA/cm <sup>2</sup> ) | V <sub>oc</sub> (V) | FF    |
|--------|-----------|-----------|---------|-------------------------------------------|------------------------------------|---------------------|-------|
| 9117   | top       | SS        | AM1.5   | 6.36                                      | 8.55                               | 1.004               | 0.741 |
| 9179   | middle    | SS        | >530 nm | 3.45                                      | 7.42                               | 0.678               | 0.687 |
| 9170   | bottom    | Al/ZnO    | >630nm  | 3.08                                      | 8.14                               | 0.595               | 0.635 |
| 9381   | triple    | Al/ZnO    | AM1.5   | 10.0                                      | 6.40                               | 2.242               | 0.704 |

<u>Goal</u>: Efficiency > 9.0% encapsulated stable large-area cell with aperture-area of 460 cm<sup>2</sup>. <u>Required cell efficiency</u>: In order to achieve this goal, we need an initial total-area (0.268 cm<sup>2</sup>) cell efficiency > 11.2%



# a-Si & μc-Si Device Physics Projects: Recent Progress

- Band & bandtail parameters for a-Si solar cell models
  - Low mobility of holes is probably a significant limitation (yesterday)
  - Measurements of  $V_{oc}$  vs. T, light-soaking (to complete parameter set)
  - Measurements of hole drift mobility (time-of-flight)
    - » What affects the hole mobility? We don't know.
    - » Fun with BP, PSU, USSC!
- Hole mobility estimates for μc-Si
  - Succeeding (collaboration w. Juelich)
  - Hole drift mobility around 1 cm<sup>2</sup>/Vs at 300 K. Physics a puzzle.
- Infrared absorption spectroscopy of interfaces
  - Interesting, complicated spectra.
  - Not well explained by simple models for n/i and p/i interfaces.
     Looking at complexing & multi-phase models for doping.



# First Measurement: Infrared Absorption Spectrum of *p/i* Interface in a-Si *pin* Solar Cells



- Varying a-SiC:Bp-layer sample series from BP Solar (thanks!)
- Charge modulation spectra show effect of varying B in p-layer.
  - Our grail!
- E<sub>F</sub> shift is a partial explanation, but more structure than expected.
  - n-layers also full of surprises – which were likely evidence for complexing.



# A $V_{OC}$ & Metastability Oddity



- Goal of experiment was to determine  $V_{OC}$  when  $N_D = 0$  (by extrapolation).
- USSC solar cell (thanks)
- Used 1 s illumination "pulses" up to 100 s. Longer times, higher duty cycle after.
- Unexplained "kink" when duty-cycle changed. Seen twice.

## PENNSTATE

# $1 Sun V_{OC}$ Limited by Bulk Recombination







- Voltage regime over which bulk recombination dominates – limited by interface recombination.
- With optimized p/i, n/i interfaces such transport can extend to 1 sun V<sub>OC</sub>.
- On cells with i-layers having mobility gaps of 1.86 eV 1 sun V<sub>OC</sub> values limited by bulk recombination have been identified.
- Systematic increases in bulk recombination in  $J_D$ -V characteristics with i-layer thickness directly related to  $V_{OC}$  for  $J_{SC}$  of 7.5 mA/cm<sup>2</sup> with red light illumination.

# Light induced changes in $V_{OC}$ due to SWE in bulk:

- Confirm limitations imposed by recombination in the i-layers.
- Indicate absence of limitation due to recombination through tail states – whose densities are not affected by SWE.

# PENNSTATE

### **Importance of V<sub>n</sub> in Determining Cell Characteristics**





- V<sub>n</sub>: potential barrier in i-layer at n contact
- V<sub>n</sub> determined by space charge of electron filled gap states due to large n<sub>0</sub> – not large densities of states.
- $n_0$  depends on alignment of  $E_F$  in n layer with  $E_c$  in i-layer.
- Alignment different for p-i-n cells with a-Si:H and µc-Si:H n contacts.
- Bulk recombination same.
- Carrier injection clearly lower for n-a-Si:H
   higher V<sub>n</sub>.
- Consistent with: close alignments of  $E_c$ , between i and n a-Si:H ( $E_A \sim 0.26 eV$ ); 1.1eV bandgap of  $\mu c$ -Si:H,  $\sim$  equal discontinuities in  $E_c$  and  $E_v$  with i a-Si:H ( $E_A \sim 30 meV$ ). (Koval et al., *J. Non. Cryst. Solids*, **299-302**, 1136, 2002)
- Opposite conclusion by Poissant et al. (*J. Appl. Phys.* **93**, 170, 2003) based purely on  $V_{OC}$  and modeling results.
- No effect on  $V_{\rm OC}$  zero current flow.

# **Device Design and Efficiency Research**

### University of Toledo

- To study the effect of interface layers at ITO-p and n-ZnO. Need to deposit 12 layers of triple cell without vacuum break
- A new self-designed 5-chamber system (four sputter + one loading) to allow uniform deposition of 4"x4" films (Ag, Al, ZnO, ITO) is being integrated into UT's existing 4-chamber PECVD/HWCVD system. Project 70% completed.
- One sputter chamber is completed. Uniform deposition achieved using a rotating substrate holder over a 3" sputter target. ITO film is being optimized in this chamber.



# Improved back reflectors using multi-layer approach Energy Conversion Devices, Inc. Greg Demaggio, Scott J. Jones (P.I.) Tongyu Liu, Jeff Steel and David Tsu

<u>Goal:</u> Devise new multi-layered back reflector that will lead to enhanced cell currents and improved efficiencies.

<u>First Approach:</u> Take present Al/ZnO back reflector used in production and add optical stack of materials with different indices for refraction. In particular, add layers with high n to enhance reflection in the >600nm region.



#### Activities:

Focusing on multi-layer structure of (low n)/(high n)/(low n) materials

With high n material being Si and low n material being ZnO alloyed with elements identified as X and Y



Using dc sputtering to fabricate layers

Most of our work has been on producing the ZnO alloys to prepare materials with:

- 1) High transparency
- 2) High conductivity
- 3) Low n (below 1.7)

Through alloying with X and Y, have been able to prepare materials with high conductivity ( $\rho_o$ < $10^{-3}$   $\Omega$ cm), high transparency (96-97%) and n between 1.6 and 1.7.



Initial Cell Performance without optimization of layer thicknesses demonstrates similar Voc, FF and  $R_s$  for cells with Ag/ZnO and new back reflector materials – Currents need to be improved with proper optimization of back reflector film thicknesses.

| Back      | V <sub>oc</sub> | $J_{sc}$    | FF    | $R_{\rm s}$           | P <sub>max</sub> |
|-----------|-----------------|-------------|-------|-----------------------|------------------|
| reflector | (V)             | $(mA/cm^2)$ |       | $(\Omega \text{ cm})$ | $(mW/cm^2)$      |
| Ag/ZnO    | 0.641           | 22.68       | 0.497 | 8.7                   | 7.23             |
|           |                 |             |       |                       |                  |
| Al with   | 0.638           | 19.18       | 0.496 | 9.9                   | 6.06             |
| ZnOX      |                 |             |       |                       |                  |
| Al with   | 0.639           | 20.60       | 0.494 | 9.6                   | 6.50             |
| ZnOY      |                 |             |       |                       |                  |





# DEVICE DESIGN AND EFFICIENCY OPTICALLY-BASED LIMITATIONS TO EFFICIENCY

**Goal:** A basic understanding of the optical physics of solar cells, verified through experimentation, that allows separation, quantification, and ultimately -- though simulation -- prediction of the optically-based limitations to solar cell efficiency

New results: Advanced TCO measurement capabilities.





Photon energy (eV)

Determination of optical properties and structure of materials in the textured state through\*:

- (i) better suppression of scattering via two-layer sandwich contacted with index-matching fluid
- (ii) improved separation of the absorption due to TCO and glass
- (iii) more advanced optical modeling that combines SE on textured surface(for *n*) and T on index-matched sandwich (for *k*)
- \* G. M. Ferreira et al., MRS Proc. (2003, in press)

Real time characterization of optical properties and *structural evolution* by "Mueller matrix ellipsometry"\*:

- (i) "microscopic scale" roughness from polarization change upon reflection
- (ii) "macroscopic scale" roughness from reflectance deficit
- (iii) "geometric scale" roughness from the degree of polarization
- \* C. Chen, et al., Phys. Rev. Lett. **90**, 217402 (2003).





### DEVICE DESIGN AND EFFICIENCY OPTICALLY-BASED LIMITATIONS TO EFFICIENCY

Goal: Multilayer transparent conductors to minimize high energy

reflection and parasitic absorption losses

Need a multilayer broad-band anti-reflector (400 - 800 nm) Approach:

as a top contact; also need a multilayer broad band "perfect"

reflector (800 - 1000 nm) as dielectric spacer in retroreflector

Example of losses that must be overcome with this approach; DJ<sub>sc</sub>





 $\lambda_{MIN}$  (nm)

### Device Design and Efficiency subteam Team priorities

### **Urgent Issues with highest priority**

- Fabricate and improve a-Si/a-SiGe/μc-Si triple cell (USSC, UT)
- Establish device physics related to  $\mu$ c-Si and thin film Si (SU)
- Study the dependence of  $\mu$ c-Si formation on different substrates (UT)
- Evaluate and improve the doped layer in multiple junction structure for µc-Si bottom cell i-layer (USSC)
- Study and control the p-i and n-i interface layers for narrow bandgap cells (USSC, UT)
- Deposition of a-SiGe and μc-Si material at high deposition rate (USSC, ECD, UT, PSU)
- Optical designs for light enhancement (ECD, UT, PSU)
- Identify and develop consensus on approaches that have the highest possibility to lead to 15% stable solar cells. (USSC)

### **Important Issues:**

- Characterization techniques for μc-Si and correlation of these measurements with device performance (SU, UT)
- Post-deposition treatment for µc-Si solar cells
- Understanding and improving Voc (USSC, SU)
- Deposition of μc-Si in large area. (USSC)

# **Future Plans**

### **United Solar:**

- Continue to optimize μc-Si materials and cells to be integrated into a-Si/a-SiGe/μc-Si triple-junction structure. a-Si top and a-SiGe will also be optimized
- Continue to optimize large area a-Si/a-SiGe/a-SiGe structure using constraints imposed by production conditions.

### ECD:

- Develop optically enhanced back reflector
- Develop high rate μc-Si deposition process

# **Future Plans—Con'd**

## **Syracuse:**

- Conduct hole mobility measurement for dilution series, deprate series, CIS
- Polymer/Si heterojunctions
- IR spectroscopy (interfaces, μc-Si)
- Device physics and modeling → degraded state

### **PSU—Wronski:**

Continue research in present areas.

# **Future Plans—Con'd**

### **Collins (PSU and UT):**

- Optimization of optical collection—expt.
  - •Grading schemes in SiGe:H (UT)
  - •Texturing of back-reflector ZnO (PSU)
  - •Index variation in ITO and ZnO (UT)
  - •Improved ZnO/metal interfaces
- Optimization of Optical Collection—Theory
  - Optical function of material components
  - Properties of interfaces
  - Micro/macro/geo roughness

# **Future Plans—Con'd**

### **Collins (PSU and UT):**

- Materials—Phase diagrams and protocrystalline SiGe:H
  - •RF and VHF PECVD with SiH4/GeH4 (PSU)
  - •RF and VHF PECVD with Si2H6/GeH4 (UT)
- Materials—Phase diagrams and optimization of uc-Si:H
  - •RF, VHF, HWCVD (UT)

### Deng (UT)

- Deposit complete ITO/a-Si/a-SiGe/a-SiGe/Al/ZnO in an integrated system without vacuum break
- Deposit μc-Si solar cells using VHF PECVD and HWCVD